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We develop a family of Eulerian—Lagrangian localized adjoint methods for the so-
lution of the initial-boundary value problems for first-order advection-reaction equa-
tions on general multi-dimensional domains. Different tracking algorithms, including
the Euler and Runge—Kutta algorithms, are used. The derived schemes, which are
fully mass conservative, naturally incorporate inflow boundary conditions into their
formulations and do not need any artificial outflow boundary conditions. Moreover,
they have regularly structured, well-conditioned, symmetric, and positive-definite co-
efficient matrices, which can be efficiently solved by the conjugate gradient method
in an optimal order number of iterations without any preconditioning needed. Nu-
merical results are presented to compare the performance of the ELLAM schemes
with many well studied and widely used methods, including the upwind finite dif-
ference method, the Galerkin and the Petrov—Galerkin finite element methods with
backward-Euler or Crank—Nicolson temporal discretization, the streamline diffusion
finite element methods, the monotonic upstream-centered scheme for conservation
laws (MUSCL), and the Minmod schemeg 1999 Academic Press
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1. INTRODUCTION

Many difficult problems arise in the numerical simulation of fluid flow processes witt
porous media in petroleum reservoir simulation and in subsurface contaminant tran:
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and remediation. The mathematical models used to describe these complex flow proc
are coupled systems of time-dependent nonlinear partial differential equations (PDEs
constraining equations. These problems are basically advection or reaction domin
Because of the nonlinearity and couplings of these governing PDEs, the moving s
fronts present in the solutions of these PDEs, the effect of the singularities at wells,
heterogeneities of media that yield rough coefficients in these PDEs, and the enormou
of field-scale applications, these systems present severe difficulties.

A mathematical model for describing compressible, multicomponent fluid flow proces
within porous media in petroleum reservoir simulation and in subsurface modeling
remediation can be represented by a system of PDEs [1, 2, 5, 24, 39, 51]

d

5(¢p)+v'(pV)=pq, xeQ,tel0,T],
< (1.1)

V=__(Vp_logvd)7 XEQ,tE[O,T],
M

3 _ .
ﬁ(Ki(f’PCi)‘FV'(PVCi)‘i‘RiCizpciqa xeQ,tel0,TLi=1....N=-1 (12

HereQ c RY is a bounded domain that has a Lipschitz continuous bouni@ry :=
(X1, X2, ..., %), V = (8/0X1, 0/0Xa, ..., d/0Xg). p andv = (Vi, Vo, ..., Vy) are the
pressure and Darcy velocity of the fluid mixtugeandK (x) are the porosity and perme-
ability of the mediump is the mass density of the fluid mixtuigis the volumetric flow rate
accounting for the effect of the source and sink terms (e.g., injection and production we
d(x) isthereservoir deptly(cy, . . ., Cy) isthe viscosity of the fluid mixture, anglis the re-
tardation coefficient that has pronounced effects in such enhanced oil reservoir technol
as polymer and surfactant flooding and in subsurface contaminant transport and remed
[1,5,24,39c(xt) (i=12,...,N), with ZiN:l ¢, = 1, stand for the mass fractions of
theith component in the fluid mixture, such as methane, ethane, propane, and n-buts
reservoir simulation [1, 2, 24, 51], or brine and trace-species radionuclides in subsur
contaminant transport of hazardous nuclear waste [57, 58], or organic contaminants
nutrients in bioremediation [7, 46, 47]. TR®(Cy, ..., cn) (i = 1,2,..., N—1) represent
the first-order reaction coefficients that could have significant effect in subsurface con
inant transport and remediation, and théx, t) (i = 1, 2,..., N) are either the specified
concentrations of the injected fluids at injection wells or the resident concentrations a
production wells. In Eq. (1.2) we chose to neglect the effect of diffusion-dispersion, bece
itis often very small. We refer readers to [24] for models including the diffusion-dispers
term.

Different boundary conditions may be imposed on the system (1.1)—(1.2) dependin
specific applications. For instance, in petroleum reservoir simulation, the boui@asy
often a noflow boundary characterized by

v-n=0, X € 09, (1.3)
wheren(x) is the unit outward normal to the boundar§2. This reflects the fact that the

boundary of the reservoir is impermeable. In this case, no boundary condition shoul
specified for Eq. (1.2).



122 WANG ET AL.

In a numerical simulation of subsurface contaminant transport and remediation, pa
the boundary Q" is an inflow boundary characterized by

v.n<0  xeaQl). (1.4)

In this case an inflow Dirichlet boundary condition is imposed on the bourfiaty for
Eqg. (1.2)

cx,t)y=gx,t), xeaQ, tel0, T (1.5)

Nevertheless, no boundary condition should be specified for Eq. (1.2) on the outflow bol
ary 3Q(© characterized by

v.n>0  xei@, (1.6)

since the concentratior(x, t) on 3Q(® is determined completely by its value inside the
domaing.
In addition, the following initial conditions for the pressure and the concentration

,0 = , Q,
P(X, 0) = po(X) X € (1.7)
c(x, 0) = cp(x), XeQ

are imposed for the system (1.1)—(1.2).

Remarkl.1 In subsurface contaminant transport and remediation and in petrole
reservoir simulation [5, 7, 24, 39, 46, 51, 57, 58], the fluid flows are often incompressil
that is, characterized by

L = Pr (1.8)

with p. being the reference density, or weakly compressible, that is, described by
equation of state

p = pr eXp(CH(P — Pr)) (1.9)

and its various simplified versions. In Eq. (1.8),is the compressibility of the fluid that is
usually very smallp, is the density at the reference presspre

Remarkl.2 In multiphase flows such as the immiscible displacement of hydrocarbc
by water in secondary recovery and the compositional models that describe the transp
N chemical components in the gas, oil, and water phases, an analogue of Egs. (1.1) hol
each phase. After some rearrangements, the PDEs for the different phases can be re\
as a nonlinear parabolic PDE for the pressure, and one (for two-phase flows) or two
three-phase flows) nonlinear hyperbolic PDEs for the saturations of the phases [10, 1:
51]. Meanwhile, an analogue of Eq. (1.2) still holds for each oNhehemical components
in multiphase/multicomponent fluid flows. The nonlinear hyperbolic PDEs also arise
many other important applications, such as famous Euler equations in the mathems
modeling of aerodynamics, and often present severe numerical and analytical difficu
[34, 48, 66].



ELLAM SCHEMES FOR ADVECTION-REACTION PDE 123

Remark1.3 While advection-reaction PDEs and nonlinear hyperbolic conservati
laws present serious difficulties that are common for various applications, they also ex
salient features/difficulties for different applications. In aerodynamics, the concerned fl
are mainly (e.g., ideal) highly compressible gases. The width of the steep fronts in
solutions is often so small that these fronts are usually treated as “shock discontinuit
The interaction of these shock discontinuities could be extremely complicated. In the po
medium fluid flow processes, the governing PDEs (1.1)—(1.2) were obtained via a vol
averaging mechanism and should model the behavior of the flows and the steep fror
the solutions on a macroscopic scale. Due to the enormous size of field-scale applica
quite large grid-spacings must be used in a field-scale simulation. Hence, the fronts ©
solutions are still very steep on any reasonable grids but probably do not form areal s
discontinuity, especially for the unknown concentrations governed by the transport P
(1.2). Moreover, the heterogeneities of the reservoir media and the effect of singular sot
and sinks (representing injection and production wells, in practice) often introduce se
new difficulties. In addition, in petroleum reservoir simulation, the pressure could be fa
high (say, 5000-6000 psia), especially near the wells. This in turn causes the deform
of the porous media and introduces an additional phase, whose behavior (e.g., adsor
desorption, etc.) needs to be simulated in the simulation. Among others, the follow
formula has been used to model the deformation of porous media [2]

¢ = ¢ (X) eXP(Cy (P — Pr)), (1.10)

wherec, is the compressibility of the porous medium, afpdx) is the porosity of the
medium at the reference pressyge All these issues introduce essential difficulties the
are probably encountered less frequently in many other applications.

Remarkl.4. Note that the principal variables of physical interest in the system (1.1
(1.2) are the concentratiomgx,t) (i = 1, 2,..., N) of the N components. In petroleum
reservoir simulation, they show fluid composition changes due to fluid flows and pt
behavior changes. Equivalently, they show how much oil is recovered. In subsurface
taminant transport and remediation, changes iliustrate the transport of various specie:
or components in groundwater or the effect of remediation, which one wants to detern
Hence, this paper focuses on improving the numerical approximation techniques tc
transport equations (1.2). After being decoupled from the pressure PDE (1.1) and
transport PDEs (1.2) fof = 1,2,..., N — 1 with j # i, the transport PDE (1.2) for the
componenti is virtually linear with respect to the concentratignwith a possible non-
linearity arising from the first-order reaction coefficidRt(cy, ..., cy). Therefore, in this
paper we develop a numerical method for linear advection-reaction PDEs with a partic
interest on its application to porous medium flows.

2. NUMERICAL METHODS FOR ADVECTION-DOMINATED PDE s

The numerical treatment of advection-reaction PDESs often presents severe numeric:
analytical difficulties. Standard finite difference or finite element methods tend to gel
ate numerical solutions with severe non-physical undershoot and overshoot. In indu
applications, upstream weighting techniques are commonly used to stabilize the nume
approximations in large-scale simulators. However, these methods produce excessiv
merical dispersion and potentially spurious effects related to the orientation of the grid.
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general classes of improved approximations can be identified from the literature:
Eulerian methods that use the standard temporal discretization and the characteristic |
ods whose main distinguishing feature is the use of characteristics to carry out the
cretization in time.

2.1. Eulerian Methods

Most Eulerian methods are based on upstream weighting techniques. The optima
function methods [4, 11, 14] attempt to minimize spatial errors and yield an upstream bi:
the resulting numerical schemes. Hence, they are susceptible to time truncation error
introduce numerical dispersion and the restrictions on the size of the time steps. They
to be ineffective for transient advection-dominated problems. Some other Eulerian met|
[8, 17, 76] attempt to reduce the local truncation errors by using nonzero spatial erro
cancel temporal errors. The streamline diffusion finite element methods (SDMs) [9,
41, 44] add a numerical diffusion only in the direction of streamlines with no crosswi
diffusion introduced and usually generate fairly accurate numerical solutions. Howe
these methods contain an undetermined parameter in the test functions that needs
chosen very carefully to obtain accurate numerical results. If the parameter is chosel
small, the methods could still generate numerical solutions with oscillations. But if it
chosen too large, the methods will introduce excessive numerical dispersion and sme:
numerical solutions. Unfortunately, an optimal choice of the parameter is not clear ar
heavily problem-dependent.

High resolution methods, such as the Godunov methods, the total variation diminisl|
methods (TVD), and the essentially non-oscillatory (ENO) methods [15, 18, 22, 36, 64,
70], are well suited for the solution of nonlinear hyperbolic conservation laws and resc
shock discontinuities in the solutions without excessive smearing or spurious oscillati
Moreover, they conserve mass; this property is of essential importance in virtually
applications. In aerodynamics where the fluids are highly compressible and often ex
shock discontinuities, high resolution methods have been successfully applied and
generated very satisfactory results. Because these methods are mostly explicit, the s
the time steps in these methods is subject to the CFL constraint. Few references cot
found in the literature on the application of high resolution methods to porous medium fl¢
in the presence of strongly heterogeneous porous media and injection and production \

2.2. Characteristic Methods

Because of the hyperbolic nature of advective transport, characteristic methods have
investigated extensively and have been successfully applied to solve advection-rea
PDEs [16, 21, 34, 35, 48, 50, 52-55, 65, 71].

It is worth noticing that the Courant number actually indicates the number of cells
formation propagates on the numerical grids per time step. Because Eulerian method
the standard temporal discretization in the time direction, they cannot accurately simt
all of the wave interactions that take place if the information propagates more than
cell per time step (i.e., if the CFL condition is violated), either for the reason of stabil
(for explicit methods) or for the reason of accuracy (for implicit methods). On the ott
hand, by using the characteristic tracking, characteristic methods follow the movemel
information or particles as well as their interactions. In fact, in the Lagrangian coordina
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the advection-reaction PDEs (1.2) can be rewritten as non-homogeneous first-order
nary differential equations. In other words, following the characteristics one would only
the effect of the reaction terms and the right-hand side source terms but not the effect c
moving steep fronts. Hence, the solutions are much smoother along the characteristic:
they are in the time direction. This explains why characteristic methods allow large t
steps to be used in a numerical simulation while still maintaining its stability and accur:

While characteristic methods have improved accuracy and efficiency as well as c
advantages, they usually require extra implementational effort and raise many impler
tational and analytical issues that need to be addressed. Traditional forward or pal
tracking methods advance the grids following the characteristics. They greatly reduce
poral errors and, thus, generate fairly accurate solutions even if large time steps are
However, they often severely distort the evolving grids and greatly complicate the s
tion procedures. The modified method of characteristics (MMOC) [21] follows the fl
direction by tracking the characteristics backward from a fixed grid at the current time
and hence, avoids the grid distortion problems present in forward tracking methods.
MMOC symmetrizes and stabilizes the governing PDEs which greatly reduces temg
errors; therefore it allows for large time steps in a simulation without the loss of accur
and eliminates the excessive numerical dispersion and grid orientation effects prese
many Eulerian methods [24, 62]. However, the major drawbacks of many previous che
teristic methods are that they fail to conserve mass and have difficulties in treating ge!
boundary conditions.

2.3. The Eulerian—Lagrangian Localized Adjoint Method (ELLAM)

The Eulerian—Lagrangian localized adjoint method (ELLAM) [12, 38] was original
proposed by Celia, Russell, Herrera, and Ewing in solving one-dimensional (const
coefficient) advection-diffusion PDEs. The ELLAM methodology provides a general ch
acteristic solution procedure for advection-diffusion PDEs and a consistent framewor}
treating general boundary conditions and maintaining mass conservation. Thus, itoverc
the two principal shortcomings of the previous characteristic methods while maintair
their numerical advantages. Subsequently, Healy and Russell [37] extended the ELI
concept and developed a finite-volume ELLAM scheme for one-dimensional advect
diffusion PDEs. Dahle, Russell, and Ewing [20, 25] developed an ELLAM scheme for
one-dimensional Buckley—Leverett equation arising from immiscible fluid flow proces
in porous media. Binning and Celia [6] and some of the authors [72, 75] developed ELL
schemes for two-dimensional advection-diffusion PDEs.

In this paper we develop a family of ELLAM schemes for first-order linear advectic
reaction PDEs on generdldimensional spatial domains. Recall that for second-ord
advection-diffusion PDEs, boundary conditions are specified at both inflow and outf
boundaries. However, for first-order advection-reaction PDEs, boundary conditions ca
specified only at inflow boundaries. Consequently, many Eulerian and characteristi
nite difference methods often require an artificial outflow boundary condition to be adc
In contrast, the ELLAM schemes developed in this paper treat outflow boundaries
systematic manner and conserve mass without any artificial outflow boundary condit
needed. Second, the ELLAM schemes for second-order advection-diffusion PDES
coefficient matrices that have mesh-size-dependent condition numbers and are not r
sarily symmetric for certain types of boundary conditions. In contrast, the ELLAM scher
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developed in this paper yield well-conditioned, regularly structured, symmetric and posit
definite coefficient matrices for first-order linear advection-reaction PDEs. Conseque
the discrete algebraic systems can be efficiently solved by the conjugate gradient me
in an optimal order number of operations (i.e., the same order of operations as exj
methods) without any preconditioning needed. Third, ELLAM schemes were previoL
developed for second-order advection-diffusion PDEs on two-dimensional rectangulal
mains [6, 72, 75] with rectangular spatial partitions and piecewise-bilinear trial and 1
functions. In this paper, ELLAM schemes are developed for first-order linear advecti
reaction PDEs on generdidimensional spatial domains withdimensional simplex or
rectangular spatial partitions and piecewise polynomial trial and test functions of de
less than or equal to. Finally, as in the case of advection-diffusion PDEs, the ELLAN
schemes significantly reduce temporal truncation errors and generate accurate num
solutions for first-order advection-reaction PDES, even if large time steps are used.

The rest of the paper is organized as follows: In Section 3, we derive a reference weal
mulation for linear advection-reaction PDESs. In Section 4, we develop a family of ELLA
schemes. In Section 5, we discuss implementational issues. In Section 6, we briefly r
some widely used numerical methods for advection-reaction equations. In Section 7
perform numerical experiments to compare the performance of the ELLAM schemes \
many well studied and widely used methods, including the upwinding finite differer
method, various Galerkin and Petrov—Galerkin finite element methods, the streamline
fusion finite element methods, the monotonic upstream-centered scheme for consery
laws (MUSCL) [15, 70], and the Minmod scheme [36, 64]. Section 8 contains summ
and discussions.

3. VARIATIONAL FORMULATION

3.1. Model Problem

In this paper, we develop a family of ELLAM schemes for linear advection-reacti
PDEs. Hence, we assume that all the coefficients in the transport PDEs (1.2) are know!
consider the following multi-dimensional linear advection-reaction PDE

Lc:= % + V- (ve(x, 1)) + R(x, t)c = q(x, t), XxeQ, te(0T], 3.1

where©2 ¢ RY is a bounded domain with a Lipschitz continuous boundegy We de-
compose the space-time boundary= 9 x [0, T] as

r=rur™yr©, (3.2)
with
'O ={x1t)|xed, tel0 T],v(x 1) nXx) < 0},

N = {(x,t) | x € 92, t € [0, T], v(X, t) - n(x) = 0}, (3.3)
O :={x1t) | xed, tel0,T],v(Xt) nx) > 0}

being the inflow, noflow, and outflow space-time boundaries, respectively. In genétal,
™ andr'© are time dependent and are not necessarily connected. Because Eq.
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is a first-order hyperbolic equation, only an inflow boundary condition is specified on
inflow boundaryr""

c(x, t) = g(x, 1), x,t) er®, (3.4)

and no boundary condition should be specified on the noflow boudti&lhyor the outflow
boundaryl"®. In addition, an initial condition

c(x, 0) = co(X) (3.5)

is needed to close Eg. (3.1).

3.2. Definition of Test Functions

Let N; be a positive integer. We define a quasi-uniform temporal partition oRn][By
022t0<t1<t2<~-~<tN,1<tNt::T. (36)

Multiplying the governing equation (3.1) by the space-time test functiopst) that are

continuous and piecewise smooth, vanish outside the space-tim&strift,_;, t,], and

are discontinuous in time at timg_;, we obtain a space-time weak formulation

tn
/ v(X, 1) - n(X)cx, Hw(x,t)dS

—1 JOQ

1

/cb(x,tn)c(x, thw(X, tn)dx+/
Q tn

ty
—/ /c(x, t)(Pwy + V- Vw — Rw)(x, t) dx dt
Q

th-1

tn
:/d>(x, th—1)C(X, th_)w(X, t;r_l)dx+/ /q(x,t)w(x, t) dxdt, (3.7)
Q tn—l Q

wherew(x, t ;) = Iimt_nnt1 w(X, t), which takes into account the fact thatx, t) is
discontinuous in time at timig_1.

In the ELLAM framework [12, 38], the test functions are chosen to satisfy the adjoint
equation of the governing equation (3.1)

dwy +V-Vw — Rw =0. (3.8)

Lety = r(8; X, t) be the characteristic passing through a given point) with t
[th—1, tn] and let it be determined by the initial-value problem

_ V.0)
Ry, 0)’ (3.9)
Ylo=t = X.

dy_q,
de V. 0)

Equation (3.8) is rewritten

_;_ew(r(g; X, D). 6) + R®(r(6: X. 1), O)w(r 6; X. 1), 6) = 0, (3.10)

w(r(@; X, 1), 0)lo=t = w(x, 1),
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whereR®(x,t) := R(x, t)/®(x,t). Solving Eg. (3.10) leads to the following expressior
for the test functionsv

t o
w(r (0: X0, 0) = w(x, De by FCCFOy (3.12)

Remark3.1 Equation (3.11) shows that the test functianim the ELLAM formulation
should vary exponentially along the characteristics defined by the ordinary differer
equation (3.9). Moreover, once the valuewak, t) is specified, the value af(r (9; X, t), )
along the characteristiz = r(9; X, t) is completely determined. Therefore, to define th
test functionsw on the space-time stri x [t,_1, t,], we only need to defina on Q at
the timet, and on the space-time outflow bound&4?’, where

Th o =09 x [th_1, ta],

IV = {(x,t) € Th | V(X, 1) - n(X) < O},
IV = {(x,t) € Th | V(X, 1) - n(X) = 0},
@ = {(x,t) € Ty | V(X, 1) - N(x) > O}.

(3.12)

3.3. A Reference Equation

We now evaluate the second term on the right-hand side of Eq. (3.7). To avoid confus
we replace the dummy variablgsandt in this term byy andd and reserve andt for the
points inQ at timet, or on the space-time boundaly;, representing either heads or fee
of characteristics. LR (9) C 2 be the set of the points that will flow out of the dom&in
during the time period, t,]. Hence, for any € Q\Q(6), there exists ar € @ such that
y = r(8; X, ty). Similarly, for any(y, 8) € Q(6), there exists a paiix, t) € '\’ such that
y = r(0; X, t). Therefore,

th
/ /Qq(y, Hw(y, H)dydo
tr|—1

th
= / / q(r(@; x, ty), Hw(r(6; x, ty), 0) dr do (3.13)
thos J Q\Q(0)

th
+ / ar (@: %, 1), Ow(r @ x, 1), 6) dr dg.
tho1 /()

Applying the Euler quadrature gtto the first term on the right-hand side yields

th
/ / q(r@: X, ty), O)w(r(O; X, ty), 6) dr do
thot J Q\Q(0)

tn

=/ q(r(@; X, tn), OHw(r(6; X, tn), 6)|I1(0; X, ty)| do dx
@ (3.14)

th
:/q(x, tn)w(X, ty) U e R Xt t0=0 gg | dx + E4(q, w)
Q t*(x)

= / WD (X, t)q(X, th)w(X, th) dx + E1(q, w),
Q



ELLAM SCHEMES FOR ADVECTION-REACTION PDE 129

where

ar(@; x, tp)

J1(0: X, ty) = o

=1+ 0Oty —6) (3.15)

is the Jacobian determinant of the transformation fsota r. To accurately measure the
effect of the reaction and source terms on a patrticle traveling from the previous time |
or the inflow boundary to the current time level, fore Q at timet,, we introduce a
degenerating time step factat (" (x) by

(3.16)

th — th—1, if r(0;x,t,) € 2,V0 € [th—1, tal,
At(l)(X) — n n—1 ( ) n) [n 1 n]
th — t*(X), otherwise.

In the latter casd;*(x) € [tn_1, tn] IS the time whem (9; X, t,) intersects the boundabg
(i.e.,r(t*(X); x, ty) € 9R). In Eq. (3.14), thel Y (x, t,) andE1(q, w) are given by

1—e R At (x)

if R®(X, tn) # 0,

vD(x, t,) = R® (X, tn) ’ (3.17)
AtV (x), otherwise
and
tn
E1(q, w) = / / [a(r(0; X, tn), 0)131(6; X, ta)| — A(X, t)]
Q Jt*(X)
x w(X, th)e R ®W =0 gg dx (3.18)
The second term on the right-hand side of Eq. (3.13) is treated similarly
tn
/ qr@; x,t), Hw(r(@; x,t), ) dr do
tho1 /20
t
=/ / qr@; x, ), Hw(r(@; x, 1), 0)|32(0; X, 1)|do dS
r® Jex,t)
(3.19)

t
:/0) V(X 1) - n(Xx)q(x, t)w(x,t)[/ e R®O=0 do | do d S+ Eo(q, w)
I t

*(x.0)

B / o, YOG D) - nOOW P (x, A, Dw(x, 1) dS+ Ex(q, w),
r

whereJ;(0; X, 1) = v(x,t) - n(X)[1 + O(t — 6)] is the Jacobian determinant of the trans
formation from(x, t) € T\© tor(6; x, t) € Q(6) at time6. Also, for (x, t) € T'(?, we in-
troduce another degenerate time step fastsP’ (x, t) by

t —to_1, if r@;x,t) € 2,0 € [ta1, t],
AtO(x, 1) = -t ) [tr-2.1] (3.20)
th — t*(x, 1), otherwise,

where we denote by (x, t) € [t,_1, t] the time wherr (0; X, t) intersects the boundag.
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W@ (x, 1) andEx(q, w) are given by

1— e RI&DALO (x, 1)
2 if R(x,t) £ 0,
vA(x, t) = R?(x, 1) 1) # (3.21)
AtO(x, 1), otherwise

and

t
Eax(q, w) == /(o)/ [q(r(@; x, 1), 0)|J2(r (0; X, )| — v(X, t) - n(X)q(X, )]
@ Jtex.t)
x w(x, 1)e RO qgdg (3.22)

Substituting Egs. (3.14) and (3.19) into Eq. (3.7) and incorporating the inflow bound
condition (3.4) into Eq. (3.7), we obtain the reference equation

/@(x,tn)c(x,tn)w(x,tn)dx+/ V(X, 1) - n(X)cx, Hw(x,t)dS
Q r©

— / D (X, th_1)C(X, thoD)w (X, tn+—1) dx + / yd (X, t) (X, thw(X, ty) dx
Q @ (3.23)
+/ W@ (x, Hv(x, 1) - nEOGX, Hw(x, 1) dS
1—‘:‘O)

rd
where

tn
E(w) :=/ /c(x, t)(dw; +V-Vw — Rw) (X, t) dxdt + E1(q, w) + E2(q, w). (3.24)
Q

th-1

4. ELLAM SCHEMES

4.1. Trial Spaces

Recalling Remark 3.1, in order to define the test functioms Eq. (3.7), we only need to
specify them o2 at timet,, and on the space-time outflow bound&yy’ . We first define a
regular @-dimensional tetrahedron or rectangular) finite element spatial parfifion Q,
with h being the diameter of the partition, as in standard finite element methods. We 1
extend the partition into a regular partition @nat timet, and on the space-time outflow
boundaryl"{®> and denote the extended partitionBy;.

Remarkd.l If the spatial nodes oR at timet,_, are tracked forward, the number of
spatial degrees of freedom crossing the space-time outflow boufiffiris essentially the
Courant number in the normal direction. To preserve the information, one should discre
in time at the outflow boundary(®> with about the same number of degrees of freedor
Hence, the partitioffy ¢ should satisfy this condition. This condition can also be justifie
from another point of view. The ELLAM schemes use characteristic tracking in tempc
discretization orf2, so they are not subject to the CFL restriction@nHowever, at the
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outflow boundany"(©’ the discretization is in the time direction. Therefore, it should obe
the CFL restriction for the reason of stability.

Let S(7h.at) be the space of continuous and piecewise polynomials of degree less
or equal tox, defined or2 at timet, and the space-time outflow bounddr§ with the
partition 7, a:. We useA to denote the closure of a setand /' (A) to denote the set of all

the nodes in the partitiof, »; that are also im.. We decompose the s&f(Q U T of
all the nodes in the partitiofi, a: as

N(QUTP) = N UM UN2 UNT UM, (4.2)
with
NP = N (3QD (),
N© —/\/(89(°>(tn))
N (2 - 320 (1) — 12O (tn)), (4.2)
NE =N (TFY =920 (ty) — 02O (th-1)).
NO = N (39O (t_1)).
where

QM () = {x|x € dQ, VX, t)-nx) <0},
AQMN(t) 1= {x | X € 9Q, V(X, 1) - n(x) = 0}, (4.3)
RO () = {x | x € I, V(X, ) - n(X) > 0}

are the spatial inflow, noflow, and outflow boundaries at tinrespectively.

Remark4.2 For any nodex;, th) € N U A<, the corresponding basis functions
wi = wj (X, t,). For any nodex;, tn_1) € /\/’(O or (xi, ) € NI, the corresponding basis
functionsw; = wj (X, t) with x € 9Q. Because)Q2(©)(t,) is the intersection of2 at time
ty andl'(®, for any node inV;{®’ the corresponding basis functioms = w (x, tn) for the
part inQ at timet, andw; = wj (x, t) for the part inl“,ﬁc”.

The trial functions in the ELLAM schemes are chosen from the S At). Since
N is the set of the nodes at the inflow boundasy' (t,), the inflow boundary condition
(3.4) is imposed. Hence, am at timet,,, the trial functionsC(x, t,) are of the form

Ct)i= > CX,twiltt)+ Y g0 twikt), XxeQ. (44)
XiEN,?U/\/}(,O) XiENAI)

Becausd\/,fol is the set of the nodes #2(© (t,_1), where theC(x, t,_1) are known from
the solutions at the previous time step, on the bounti§?y the trial functionsC(x, t) are

Cxi= > CH,twh+ Y C,thDwix 1),
X ) ENTUN % eN©) (4.5)

x,t) e T\,
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4.2. Test Spaces and ELLAM Schemes

Because the second terms on the right-hand sides of Eqgs. (4.4) and (4.5) are al
known, the degrees of freedoms in (4.4) and (4.5) are at the nod€§ ia N(©) U N,
whose cardinalitNeg = [N |+|NV{O|+|NF | (where|A|isthe cardinality of aset). If one
follows conventional finite element methods, in the numerical schemes the weak formule
(3.23) (with the truncation error terfa(w) neglected) should hold for all the basis tes
functionsw; associated with the nodesMj? UN® UNL. This closes the discrete system
However, to conserve mass all test functions should sum exactly to oﬁaorimetn and
at the outflow boundary(©’ [12], which is violated by the aforementioned test functions
Instead, all the basis functioms € S(7p A1), whose cardinality ifNa = |V (Q U ()|,
satisfy this condition. But the number of test functionslis— Ng = |V |+ |NV<°)| more
than the number of unknowns in (4.4) and (4.5), so the system is overspecified.

To overcome this difficulty, we add each equation\df’ orj\/’,ﬁ?{ to the equation at its
adjacent node, or equivalently add each test function associated with a nig¢le mN,f?{
to the test function at its adjacent node, within the same finite element cell whickisiin
in T — 892(°). In this way we obtaimNg number of basis functions for the test functions
which close the system and satisfy the above condition. We denote these functions t
(i =1,2,..., Ng) and the test space by

S'(Tn.ar) := sparii }iNzEl- (4.6)

A family of ELLAM schemes A family of ELLAM schemes (of different degree$ can
be formulated as follows: Sedk € S(7h at), Which is of the form (4.4) and (4.5), such
that for anyw € S (Zp 1)

/d)(x,tn)C(x,tn)w(x,tn)dx+/ VX, 1) - n(X)CX, Hw(x,t)dS
Q r©®

- / D (X, th-1)C (X, ti-D)w (X, t7g) dx + / WO (X, )X, t)w(x, th) dx
Ja «
4.7)
+ / WA (x, HV(X, 1) - NE)X, Hw(x, 1) dS
rr(10)

— / )v(x, t) - nxX)gX, Hwx,t)dS
r{

Remark4.3. Unlike many Eulerian and characteristic methods that often require
artificial outflow boundary condition to be added, the ELLAM schemes (4.7) naturs
incorporate the inflow boundary condition (3.4) into their formulations and provide a s
tematic way to treat the outflow boundary. Because all the test functions sum to ohe
at timet, and at the outflow bounday{®’, dropping the last term on the left-hand side
of Eq. (3.7) does not affect mass conservation [61]. Thus, the ELLAM schemes cons
mass.

Remark4.4.  Using characteristic tracking, the ELLAM schemes symmetrize the gc
erning PDE, and generate a well-conditioned, symmetric, and positive definite coeffic
matrix. Thus, the discrete system can be solved efficiently by, for example, the conju
gradient method in an optimal order without any preconditioning needed. Moreover,
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ELLAM schemes eliminate the majority of the time truncation errors, so they allow lal
time steps to be used in a simulation without loss of accuracy.

Remark4.5. The extension (3.11) of the test functions into the space-time §tm’p
[tn—1, tn] is needed only to derive the reference equation (3.23), based on which the ELL
schemes (4.7) are developed. Nevertheless, the ELLAM schemes (4.7) only need the \
of trial and test functions o U I'\”’ and do not need the extension at all.

4.3. A Concrete Example: An ELLAM Scheme on a Unit Square

As a concrete example to the ELLAM schemes developed in subsections 4.1 and
we present an ELLAM scheme for solving problem (3.1) and (3.4) over a two-dimensic
unit square := (—0.5, 0.5) x (—0.5, 0.5). For simplicity, we assume a uniform velocity
field v(x, t) = (V4, 0) with V; being a positive constant, i.e., the velocity field is parallelt
the x;-axis.

We define a uniform partition on [@'] and a uniform rectangular partitiafy, on

T
th = nAt, n=0,1,..., N, At ;== —,

N
Xy = —0.5+1Axq, i=01...,N, Axq:= N’ (4.8)
j . . 1
X, :=—0.5+ jAXy, ] =0,1,...,N, Axp = N

The space-time inflow, noflow, and outflow boundadigs, I'\), andI'(® (defined in
(3.12)) can be identified by
I = {(xg, X2, t) | Xy = —0.5, X € [-0.5,0.5], t € [th_1, ta]},
TN = {(x1, X2, 1) | X1 € (—0.5,0.5), Xp = +0.5,t € [tn_1, tn]}, (4.9)
(@ = {(Xq, X2, 1) | X1 = 0.5, X2 € [—0.5,0.5], t € [th_1, tn]}.
In other words, tha™("’ consists of the left face of the space-time sﬁpx [th-1,t] =
[-0.5,0.5] x [-0.5,0.5] x [tn_1, tn], T'(®’ consists of the right face of the cube, an{

consists of the front and back faces of the cube.
The Courant numbeZr(© at the outflow boundary(® is

Vi At
Cr© = max .
xher@ AXy

(4.10)

Because the time step in the ELLAM schemes (4.7) is taken very large, the Cou
numberCr(© is typically much larger than one. Le€[©’] be the integer part of the

Courant number; we define a uniform local refinement in time at the outflow bouRfary

(cf. Remark 4.1)

. . . At
thi 1=ty — i Aty, i =0,1,..., N¢, with Ats = Ne (4.12)
f

whereNs = [Cr(©@]if Cr© is an integer andN; = [Cr(©] 4 1 otherwise. In this way,
the last equation in (4.8) and Eq. (4.11) define a partition on the rightiféice
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The above partition and the uniform rectangular partitign(given by the last two
equations in (4.8)) define the partitidj o, overQ U T . M (Q UTSY) is reduced to

N}

U{(05x,t)]i=012...,Ni=12..,N¢} (412

N(QUTE) = {(xk, xb, ta) |i,

It is easy to see that its cardinality/ (22 U Fno))| =(N+Nf+1x(N+1).
The trial spaceSY(7y at) is the space of continuous and piecewise-bilinear functiol

defined org at timet, and the space-time outflow bounda“rSP) with the nodes given in
(4.12). Corresponding to (4.2) we have

NG = N (02D t) = {(—05,x3,t) | i =0,1,2,..., N},
N© = N(0Q2O) (1)) = {(05, %), ta) | ] =0,1,2, ..., N},
N = N(Q -0 (1) — 920 (1))
=X, X, t) [i=12...,N=1,j=012...,N}, (4.13)
NI = N0 =320 (t,) — 09O (t, 1))
={(05,x,t)[j=012...,N,i=1,2,...,Ny — 1},
NO = N (02O (th-1)) = {(05,x}, ta-1) | | =0,1,2,..., N}

Remarkd.6. Atthe node:{xl, x2, tn) € NV UNS, the basis functions ; = w, j (X1,
X2). At the nodes(0.5, xJ,t1) € AT uN(O) = {(05,x),t) | j=0,1,2,. o=
1,2,..., N¢}, the basis functionsinyi j = wnai,j (X2, t). BecauseV{® is the intersec—
tion of the domain® at timet,, and the space-time outflow bounddr§’, at the nodes
(0.5, 3, ty) € N9, the basis functiomy j = wn j (X1, X2) onQ andwy | = wn,j (X2, t)
onl©.

The inflow boundary condition (3.4) is imposed at the nodég i while theC is known
at the nodes IW(O) from the solution at the previous tintg ;. Therefore, the degrees of
freedoms are at the nodes in

NEUNOUN = {(x, %, t) [i =1,2,...,N,j =0,1,2,..., N}

U{(05,x3,t)]i=012...,N,i=12... Ny -1},
(4.14)

whose cardinalitNg = N3] + VO] + N = (N + Nt — 1) % (N + 1).

To obtainNg = (N + Nt — 1) % (N + 1) basis functions for the test functions, which
leads to a mass conservative scheme, we add the test funatigiig;, xo) at each node
(—0.5, x3) on the inflow bo'undarﬁﬂ“)(tn) to the corresponding test functions j (X1, X2)
at its adjacent nodeéxi, xJ). We denote the resulting functions ;. j(X1, X2). These
functionswy j (Xg, X2) = Wy, (x}, xp), i.e., they are constant over the intervald5, x3.
We also add the test functionsy;n;, (X2, t) at each nod€0.5, xg, th—1) on the outflow
boundary8§2<°>(tn 1) to the corresponding test functionsn,—1,j (X2, t) at its adjacent

node(0.5, xJ ™). Thus, the test function®n’n,—1,j (X2, ) = Wnin, -1, (X2, g,
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i.e., they are constant in the direction of time over the mteﬂwah[tNf 1] on the outflow

boundaryl‘rﬁo). In this way, we obtailNg = (N + N — 1) x (N + 1) basis functions for
the test functions, which sum exactly to one@rat timet, andI"{®’ and lead to a mass
conservative scheme,

~1 ~ ~
S (Tha0) = spar{{ivo |} \g. fwijhon o (Bren -1 o) (4.15)

The numerical scheme (4.7) can now be written as

. 5
/ / D (Xq, X2, 1) C(Xg, X2, th) Wi j (X1, X2, th) dX  dXo
—05

th 0.5
+/ V;C(0.5, Xz,t)@i,j(0.5, X, 1) dxo dt

th-1 /—0.5

= / / D (X1, X2, th—1)C (X1, X2, th-1)w (X1, X2, t ;1) dXg A%
5
(4.16)

5 05
+/ / WD (xq, Xo, 1) G (X1, X2, th)w (X1, X2, tn) dXq A%
. 05
tn 05
+/ / W@ (0.5, X2, t)V1q(0.5, X2, ) w(0.5, Xp, t) dx, dt
th1 J—05

th .
+/ V19(—0.5, X2, )w(—0.5, x2, t) dx dt.

th-1 /0.5
5. IMPLEMENTATIONAL ISSUES

5.1. Approximation of Characteristics and Test Functions

To evaluate the first term on the right-hand side of Eq. (4.7), one needs to track
characteristics defined by the ordinary differential equation (3.9) and then use the expre
(3.11) to calculatav(x, t ;). However, Eq. (3.9) cannot be solved exactly for a gener
variable-velocity field, and numerical means have to be used. We can define an approx
characteristiy = rnum(@; X, t), which passes througH, t), either by an Euler formula for
simplicity

Faum(@; X, 1) 1= X+ V(X 1)@ — 1), (5.1)
or by a second-order Runge—Kutta (Heun’s) method for better accuracy

_ (9
Mum(@; X, 1) 1=

[v(x t) + V(X + (0 — tv(X, 1), 0)]. (5.2)

Moreover, within a global time stept = t, — t,_1 for Eq. (4.7), we can also use a
micro-time step

Aty = — (5.3)

(with N, being a positive integer) to track characteristics defined by (5.1) or (5.2).
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Remark5.1 Because the approximate characteristics (5.1) or (5.2) do not satisfy
adjoint equation (3.8) exactly, the last term on the left-hand side of Eq. (3.7) does
vanish but is small. The authors previously proved an optimal-order error estimate fo
ELLAM scheme (with this term dropped) for a one-dimensional analogue of Eq. (3
[30]. Moreover, dropping this term does not affect mass conservation because all the
functions sum to one oft at timet, and on the space-time outflow bound&4? [61].

5.2. Evaluation of Nonstandard Integrals and a Forward Tracking Algorithm

Inthe ELLAM schemes (4.7), the trial functio@$x, t) € S(7, at) and the test functions
w(X, 1) € §‘(7?1,m) are defined as standard piecewise polynomial®at timet, and the
space-time outflow boundaiy®’. Therefore, the two terms on the left-hand side and tt
second and third terms on the right-hand side of Egs. (4.7) are standard in finite elel
methods and can be evaluated in a straightforward manner.

The first and last terms on the right-hand side of Eqgs. (4.7) are due to the applicatic
the Lagrangian coordinates and are non-conventional in any Eulerian methods. We tak
firstterm as an example to address any potential problems and to describe the correspc
algorithm that overcomes these problems. In this term, the val@(aft,_1) is known
from the solution at timé,_;. However, keep in mind that (cf. Eq. (3.11))

th
~ - RQ)(r um( Xt )» )d
wXx, t+ ) = w tye Sy RO Cmtrixtoca)y . (5.4)

with proper modification whenyym(0; X, t,) intersects the bounda®Bf2 during the time
interval [t,_1, t,]. HereX := ryum(tn; X, th—1) is the point at the head correspondingtat
the foot. The evaluation of this term can be potentially difficult and causes serious nume
artifacts in characteristic methods [3, 49].

Inthe modified method of characteristics [21, 24, 62] and some one-dimensional ELL
schemes [12, 30, 60], this term was rewritten as an integral attfijnveith the standard
value ofw(x, ty) but backtracking to evaluat€(x*, t,_1) wherex* := ryum(th—1; X, th)
is the point at the foot correspondingxaat the head. In fact, it has been shown that i
characteristic methods the backward tracking algorithm is critical in the evaluation of
term, which is in turn critical to the accuracy of the scheme [3, 49]. However, the evaluat
of this term becomes much more challenging for multiple dimensional problems due tc
multi-dimensional deformation of each finite element cell on which the test functions
defined as the geometry backtracked from timeo timet,_;. This requires mapping of
points along the boundary of the cell and subsequent interpolation and mapping ontt
fixed spatial grid at the previous time lewgl,. Binning and Celia [6] used such a mappinc
in a two-dimensional ELLAM scheme that was computationally very intensive, especi
when part or all of the cell being mapped intersects a space-time boungary

The most practical approach for evaluating this termis to use a forward tracking algori
proposed by Russell and Trujillo [61] and was implemented by Heally and Russell |
and some of the authors [72, 75] for one- and two-dimensional advection-diffusion PC
This would enforce the integration quadrature on each cell att,_; with respect to the
fixed spatial gridZ, on which®(x, t,_1) andC (X, t,_1) are defined; the difficult evaluation
is the test functionu(x, t ;) given by (5.4). Rather than backtracking the geometry ar
estimating the test functions by mapping the deformed geometry onto the fixef, giiat
discrete quadrature pointg chosen on each cell of the fixed gfidon 2 att,_ in aregular
fashion can be forward-tracked %@ := rnum(tn; Xp, t—1) at timet,. Then, we determine
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which test functions are nonzerofgfat timet, so that the amount of mass associated wit
Xp can be added to the corresponding position in the right-hand side vector in the gl
discrete linear algebraic system. Because this forward tracking does not change the so
grid or the data structure, the algorithm does not suffer from the complication of distol
grids, which complicates many forward tracking algorithms.

6. DESCRIPTION OF SOME OTHER NUMERICAL METHODS

In this section, we briefly describe some well studied and widely used numerical mett
for advection-reaction PDEs, including the upwind finite difference method, the Galet
finite element method (Gal), the quadratic Petrov—Galerkin method (QPG) [4, 11,
the cubic Petrov—Galerkin method (CPG) [8, 76], the streamline diffusion finite elem
method (SDM) [9, 40], the monotonic upstream-centered scheme for conservation
(MUSCL) [15, 70], and the Minmod scheme [36, 64]. In the next section, we carry «
numerical experiments to observe the performance of the ELLAM schemes (4.7) and
comparisons with these methods. For simplicity of illustration, we assbi(ret) = 1 and
present these methods for Eq. (3.1) or its nonconservative analogue

ac
Lc.= pre +Vv(X, t) - Ve, t) + (R(X, t) + V - v(x, t))c = q(X, 1), xeQ,te(0T],
(6.1)
on a two-dimensional rectangular domain with a rectangular partition (4.8).

6.1. The Upwind Finite Difference Method

For anyx; j := (x}, x}) € N2 UA® with x| andx] being defined in (4.8), le€!"; :=
C(Xij, tn), Vﬁj” =Vi(Xi j, th), fo’ i=Va(Xi j, t), and v{'; :=v(x j, tn). The upwind
finite difference method (UFDM) for Eqg. (6.1) can be formulated as

AN VA" IAL

2 AsCT i et (6.2)

Cf = [1-at(RI V-] el + A o

whereC"; = g(x;,;. tn) forx; j € NVj{V and

Clit—Cjt.  otherwise.

X n-1 'n;l |n:11] ’ If \/ilin_l > O!
AXCN—t - — ’ » ,
o et -t otherwise
i+1,j ij ,
(6.3)
A¥Ch-1. { ir?i_l Cirji_—llv if Vi.zjn71 >0,
i =

Remark6.1l. The upwind finite difference method (UFDM) is one of the earliest metl
ods designed to eliminate the non-physical oscillations present in standard finite differ
methods (FDMs). To date, the UFDM is still the primary underlying scheme for ma
large-scale production simulators in petroleum reservoir simulation or in subsurface
taminant transport and remediation, partially due to the following reasons: (i) The UFI
is extremely stable and could generate solutions with correct qualitative physical trent
extremely complicated multiphase (e.g., gas, oil, water, and rock phases in reservoir <
lation, or agueous, non-aqueous, and rock phases in subsurface contaminant transpc
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remediation) and multicomponent (e.g., methane, ethane, propane, and n-butane in res
simulation, or brine and trace-species radionuclides in subsurface contaminant transp
hazardous nuclear waste, or organic contaminants and nutrients in bioremediation)
flows in porous media, even if strongly heterogeneous and deformable media and sin:
sources/sinks (wells) are present. (ii) Because of the extreme complexities and difficulti
these problems, robustness and stability of its numerical simulation have been empha
very much in industrial applications. Unfortunately, since it is impossible to find the al
Iytical solutions for these problems or to have some clear understanding on the quant
behavior of these solutions, the issue of accuracy of a simulation has been largely igni
Consequently, although itis well known that the UFDM generates solutions with numer
dispersion qualitatively, not many people have actually realized how severe the nume
dispersion could be in the UFDM scheme. This is one of the most important reasons
the UFDM scheme is included in this paper.

6.2. The Galerkin and Petrov—Galerkin Finite Element Methods

Let S'(7y) be the trial function space that consists of continuous and piecewise bilin
functions on the partitiory,, given by (4.8). Then the Galerkin finite element metho
(GAL), the quadratic Petrov—Galerkin finite element method (QPG) [4, 11, 14], and
cubic Petrov—Galerkin finite element method (CPG) [8, 76] for Eq. (3.1) can be formula
as follows: FindC(x, t,) € S'(7y), which is of the form (4.4), such that

/Q[l + LAtR(X, t)]C(X, th)w j (X) dX — LAt /Q V(X, t))C(X, ty) - Vw; j(X) dx
+ LAt /m(o)v(x, th) - NO)C (X, th)wi j(X) ds
= /Q[l — (1= MALCX, th—pwi j (X) dX
+ (1 — M)At /Q V(X, th-1)C(X, th—1) - Vw; j(X) dx (6.4)
— (1= M)At /m(o) V(X, th—1) - N(X)C(X, th_1)wj j(X) ds
+ At /Q[?LQ(X, tn) + (1 — 2)A(X, th—)]wi j (X) dx
— At /a Q“)[AV(x, )X, th) + (L = V(X th-1)g(X, th-1)] - NEYwij (X) ds.

Herex € [0, 1]is the weighting parameter between the time letelsandt,. In particular,

A =0, 1, and (b yield the explicit-Euler, implicit-Euler, and the Crank—Nicolson tempor:
discretizations, respectively. The test functions are also in the tensor produetifp(r) :=

wi (X)) wj (X2). Inthe GAL schemey; (x1) andw; (X) are the standard one-dimensional ha
functions. In the QPG schem; (x) andwj (X2) are constructed by adding an asymmetri
perturbation to the original piecewise-linear hat functions

x=x1 3x-—x"Hx —x)

i1 i
AX (AX)? - xel
. - i+1 _ RV P NS
wi(X) == < X X 3(x — x")(x x)’ X e X X1, (6.5)
AX (AX)2

o, otherwise
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The CPG method was derived for the Crank—Nicolson time discretization. In the C
method, thew; (x1) andw;(x2) are defined as the original piecewise linear hat functior
with a symmetric cubic perturbation added to each nonzero piece

X=Xt x=xH —x) X~ 2x) i-1 i
Y N . o xe XX,
wi (X) = i+1 oyl i+1 _ i i+l_2 .
i (X) X X—)/(X XD (X X)(X' + X X)’ XG[X',XH'l],
AX (Ax)3
0, otherwise
(6.6)

Herey = 5Cr2 with Cr = ¥2! being the Courant number.

6.3. The Streamline Diffusion Finite Element Method

The streamline diffusion finite element method (SDM) can be formulated as follows: F
a piecewise-trilinear (linear in time) functi@(x, t) on the space-time stri@d x [t,_1, tn],
which is discontinuous in time a&t_; andt, and satisfie(x, t)|;q0 ¢, = 9(X, t), such
that

tn
/ /[Ct(x, t)+v-VCX t)+ (V-v+ RC(x,1)]
th-1 JQ

x [w(X, 1) + 8wy + V- Vw)(x, )] dx dt +/ Cx, tT Dw(x, tF ;) dx
Q

tn (6.7)
=/ /q(x,t)[w(x,t)+8(wt+v-Vw)(x,t)]dxdt
tho1 /R
+ / CX, th_pDw(x, t7;) dx.
Q
Here w(x, t7 ;) = lime e wx ) andw(x, t_y) = lim wx, b, CX, ty) =

Co(X), ands is typically chosen to be

5 Ky/hZ + (At)?2 6.8)
VI '

whereh is the diameter of the space partition antis the size of the time step.

Remark6.3. The choice o has significant effects on the numerical solutions. i
chosen too small, the numerical solutions will exhibit oscillations.i#ftoo big, the SDM
method will damp the numerical solutions seriously. Unfortunately, an optimal choice
8 is not clear and is heavily problem-dependent. In the numerical experiments in the
section, we use the formula (6.8) #yrwhich is a generally accepted choice but may not k
best possible for a given problem. In the formula (6.8), the con#taisttypically chosen
to be 1 or 05, which will be used along with several others in the next section to indic:
the general behavior.

6.4. The High Resolution Methods (Minmod and MUSCL)

High resolution methods are well suited for the solution of nonlinear hyperbolic con:s
vation laws and resolve shock discontinuities in the solutions without excessive smeari
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spurious oscillations. We consider two such schemes in this section: the monotone upsti
centered scheme for conservation laws (MUSCL), which was developed by van Leer |
and the Minmod scheme, which was based on a generalization of the first and was d
oped by Harteret al.[36, 64]. These methods apply to the following nonlinear hyperbol
conservation law

ac au(c Jdv(c
_ e du©) | av©)
ot 0X1 0X2

=0, XxeQ,te(0T], (6.9)

which is closed by the inflow boundary condition (3.4) and the initial condition (3.5).
u(c) andwv(c) in Eq. (6.9) are chosen to hgc) = Vic andv(c) = V¢, then Eq. (6.9) is
reduced to Eq. (3.1) witkb = 1 andR=q = 0.
In these methods, the unknowns are defined at the cell centgp ;12> = (x' 1/2,
x37Y?) of each cell K=, xi] x [x)™", xJ]fori = 1,....1 andj = 1,...,J. Let
C,fl/ijfl/2 = C(Xi—1/2 j—1/2, tn). These two schemes can be uniformly formulated as

At At
_ch-1 Y i ~ ~
Cin,%’jf% _Cin_%’j_% — A—Xl(ul‘J_% _ui—l,j—%) sz (v|_7 j vi—%,j—l)' (610)
To define the numerical flux functiorisandv’in Eqg. (6.10), we first define the left and
right states of the solution

AX At At
L.n—-1. - 1 - _
C _n 1= C-n 1j7% + ( - 7774— 2 i— >8X1Cn 21’]_7% - (Eln,ll E-n l- )

ii-3 i3 2 2 2AX; i-3.0-17
(6.11)
AX At At
Rn-1._ ~n-1 aA ) At n-1 n—1 _ gn-1
Gty = Ci+%,1—%_< 2 * 2’7i+%,1—%>8“ci+ -3 2Ax2(€i+%~i fiyi)
where
n-1 .__ v/~L,n—-1 R,n—1
Si—%,j =H (Ci_%’j ,Ci_%.j ) (6.12)
with the Godunov fluxH *(c,_, cr) being defined by
min v(c), if cL < cCr,
HYcy, cr) 1= { _ (6.13)
max v(c), otherwise
[cr.CL]
and
AX
L.n-1._ ~n-1 2 n-1
N A R T (6.14)
AX '
Rn-1._ ~n-1 2 n-1
R N R

The MUSCL and Minmod schemes differ in the choices of the left and right stdtes
andn~ in Eq. (6.11) as well as the slop&gC Z1i/2,j-1/2- In the Minmod scheme, the left
and right states are defined by

r%—l : Vl(Xif%,J;%stn—l), (6.15)
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while in the MUSCL method they are defined by

n s 1 i=max{o, \/il_'gfjl_%}, and  n, = min{O,Vil_‘”%le_%}. (6.16)

3173 —=3,]

In the Minmod scheme, the numerical slope in ghedirection is defined by

axertoL,iffaker < |amett |
84, C" 1 L= ¥i-1.j-3 i—5.0—3 i-3.j-3 (6.17)
. 1 .
172 AXC,_ -t otherwise
where the difference operators are given by
n—1 -1
2Ci hict ~ G i=1
AX 9 - bl
XlC” 1 . 1
|_1 L= n-1 n-1
J-3 Ci—%,j—%_ci—S/Z,j—% i |
AX:L 9 . 9 9
(6.18)
n-1 n-1
A B T S
_ AXl 9 - t AR 9 bl
Axch o = ~ ~
o 29:11}% Gl |
) I =
AXq

The numerical slope in the-direction is given by symmetry.
In the MUSCL method, the numerical slopes are defined by

-1 . : -1 -1 -1
(leci"f%’jf% = mm{A"mCi”f%’jfl, AcCi"f%!jf%H x sgr‘(ACCinf%’jf%), (6.19)
where sgiix) := 1 for x > 0, sgnx) := —1 for x < 0, and sg0) := 0, andAjn, is
defined by
Ajim =
o min{|AXCM L] |aMCM L[ ifARC)  x A¥CYE >0,
3:1-3 I=32.0-3 I=2:0=3 I=2:0=3
o, otherwise
(6.20)
and
n-1 n— 1
C|+2j 1 +3C7 4gI Lot -
3AX1 ’ ’
CI"I 1 Cn 1
ACI}, =g Tz o320 l=2....1-1 (621
5:1—5 2AX1 ) ) ) )
n-1 n-1 n-1
49IJ —3C . Lo —-C Ta2io -
3AX1 ’
The paramete; in Eqg. (6.20)is2foi = 1,...,1 — 1 and 1, otherwise. It is the upper

bound that allows the steeper representation of sharp fronts. The numerical J-f|_L%XiS
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then defined by

G j_s = H“(cifjv’f%l, cfj’“_*%l), (6.22)
where the Godunov flu" is given in Eg. (6.13) with the flux function being replaced
by u. The numerical flux functiom is then defined by symmetry.

7. NUMERICAL RESULTS

In this section we present two-dimensional numerical experiments to investigate
performance of the ELLAM scheme (4.7) with piecewise-bilinear trial and test functio
and to compare it with the numerical methods described in Section 6.

7.1. Model Problem: A Two-Dimensional Rotating Gaussian Pulse

This example considers the transport of a two-dimensional Gaussian pulse. The
tial domain isQ := (-0.5,0.5) x (—0.5,0.5), a rotating velocity field is imposed as
V1(X1, X2) = —4Xp, andVa(Xq, Xp) = 4x;. The time interval is [0T] = [0, 7 /2], which is
the time period required for one complete rotation. The initial conditi@r,, X,) is given
by

(X1 — X1c)? + (X2 — ch)2> ’ 7.1)

, = exp| —
Co(X1, X2) xp( 552
wherex;c, Xoc, ando are the centered and standard deviations, respectively. The co
sponding analytical solution for Eq. (3.1) with= 1 and f = O is given by

(X1 — X10)? + (X2 — Xzc)? _
202

t
C(Xq, X2, t) = exp(— / R(r(;x, 0),60) d@) , (7.2)
0

whereX; = X; cog4t) + xpSin(4t), Xo := —Xgsin(4t) + x,cog4t), andr(9; X, 0) =
(X1 C0940) — X2 sin(46), X1 Sin(46) + X> cog49)).

Remark7.1 This problem provides an example for a homogeneous two-dimensio
advection-reaction PDE with a variable velocity field and a known analytical solution &
can be viewed as an incompressible fluid flow in a two-dimensional homogeneous po
medium. Consequently, this example has been used widely to test for numerical artifac
different schemes, such as numerical stability, numerical dispersion, spurious oscillat
deformation, and phase errors as well as other numerical effects arising in porous me
fluid flows. The analytical solution(xy, X, t) after one complete rotation is identical to
the initial conditioncy (X1, X»), which is centered dix;c, Xoc) With a minimum value 0 and
a maximum value 1.

In the numerical experiments, the data are chosen as folldws: 1, R = 0, f = 0,
X1c = —0.25,X,c = 0,0 = 0.0447 which gives @2 = 0.0040. A uniform spatial grid of
the form (4.8), wherdr = Ax; = Axy; = 6—14 is chosen such that the analytical solutior
can be represented with a reasonable resolution, is used in the ELLAM scheme and
as a base spatial grid size in all the schemes in Section 6. Then the gridisiferther
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TABLE |
The Performance of the ELLAM _Euler, the ELLAM _RK, and the Upwind Finite
Difference (UFDM) Methods

h No.ofcells At Aty Max Min CPU CFL No.  Fig. No.

Analytical 6i4 N/A N/A NA 1 0 N/A N/A la-1b
ELLAM Euler & 4,096 5 & 0.9308 0 3ls 57 —
= 4,096 = % 0.9367 0 33s 57 —
ELLAM _RK 6i4 4,096 5 g—é 0.9987 0 1min5s 71.25 lc-1d
UFDM ei4 4,096 50 N/A  0.1491 0 1.7s 0.98 —
i 4,096 & N/A 01387 0 24s 0.71 —
i 4,096 = N/A 01229 0 12s 0.14 —
614 4,096 s N/A 01218 0 18s 0.09 —
gie 9,216 560 N/A  0.2092 0 6s 0.99 —
gie 9,216 oo N/A - 0.2016 0 7s 0.85 —
i 9,216 A N/A 01831 0 14s 0.43 —
9ie 9,216 e N/A - 0.1756 0 28s 0.21 —
= 36,864 . N/A 03475 0O 525 1.0 —
= 36,864 ;i N/A 0.3261 0 1min33s 0.71 —
= 65,536 ;% N/A 0.4105 0 2min18s 0.95 —
z%e 65,536 20 N/A - 0.3954 0 2min52s 0.76 —
3%4 147,456 = N/A  0.5109 0 9 min 0.95 —
Silz 262,144 Z= N/A 0.5661 0 58 min 0.76 2a-2b
1 1,048,576 == N/A 0.7225 0 8 h 27 min 0.76 2c-2d

1024

Note At is the micro time step defined in (5.3).

refined for all the schemes in Section 6 if needed. We have systematically varied the
steps to examine the performance of each method, because the temporal errors domin
numerical solutions with all the methods other than the ELLAM schemes. Except for
upwind finite difference method (UFDM), the MUSCL scheme, and the Minmod sche
that are explicit, all other comparative methods tested yield strongly non-symmetric sys
while the ELLAM scheme inherently symmetrizes its discrete algebraic system. We u
preconditioned conjugate gradient square algorithm (PCGS) to solve these systems
though this places ELLAM at a disadvantage. In Table I, we present the minimum
maximum values of the numerical solutions with the ELLAM and the UFDM and tt
overall CPU each method consumed, which is measured on a SGI Indigo Workstation
present the same results for the backward-Euler Galerkin and quadratic Petrov—Gal
finite element methods, the Crank—Nicolson Galerkin and (quadratic and cubic) Pet
Galerkin finite element methods, and the streamline diffusion finite element method
Table I, and those for the MUSCL and Minmod schemes in Table I1l. We realize, of coul
that some code optimization may be possible but feel that these timings are represen
of each scheme’s efficiency on these model problems. The surface and contour plof
selected runs of each method in Tables |-lll are presented in Figs. 1-12.
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TABLE Il

Diffusion Finite Element Methods

h No.ofcells At Max Min CPU CFL No. Fig. No.
BE_GAL 6714 4,096 200 0.2755 0 18 min8s 2.84 —

6714 4,096 300 0.4959 0 1h 13 min 0.71 3a-3b

% 9,216 300 0.4960 0 2h 48 min 1.07 —

614 4,096 5000 0.6697 0 3h 0.28 —

z 9,216 o 0.6700 0 6 h 50 min 0.43 —

a 4,096 o 0.7864 0 6 h 3 min 0.14 —

a 4,096 o 0.8412 0 9h4min 0.09 3c-3d
BE_QPG 5 4,096 255 0.2143 —0.0005 22min59s 2.84 —

5 4,096 5 0.3780 —0.0011  1h32min 0.71 4a—4b

gie 9,216 300 0.4221 0 3 h 24 min 1.07 —

& 4,096 5000 0.4945 —0.0022 3 h57 min 0.28 —

gie 9,216 5006 0.5621 0 8 h 42 min 0.43 —

& 409 I 05677 —-0.0036  7h55min  0.14 —

= 4,096 5050 0.6040 —0.0042 2h5min 0.09 4c-4d
CN_GAL a 4,096 = 0.8872 —0.2092 19min42s 2.84 5a-5b

= 9,216 2% 0.8900 —0.2118 48 min55s 4.27 —

5 4,096 5 0.9724 —0.0362 36 min33s 1.42 5c-5d

s 9,216 =5 0.9804 —0.0278  1h25min 2.13 —
CN_QPG o 4,096 500 0.6845 —0.1282 22min51s 2.84 6a—6b

% 9,216 500 0.7626 —0.1654 52min15s 4.27 —

614 4,096 200 0.7117 —0.0150 46 min12s 1.42 6¢c—-6d

i 9216 X 08273  -0.0247 1h43min 213 —
CN.CPG a 4,096 25 Unbounded  Unbounded — 2.84 —

a 4,096 5 0.9824 —0.0004 53min36s 1.42 7a—7b

: 9,216 & Unbounded Unbounded — 1.42 —
SDM,K = 0.5 s 4,096 5 0.7881 —0.0203 49min28s 2.84 7c-7d

K =0.01 6714 4,096 200 0.9456 —0.0037 57min32s 2.84 8a-8b
K = 0.001 6714 4,096 500 0.9502 —0.0033 57 min55s 2.84 8c—-8d

7.2. The ELLAM Simulation

The numerical results of ELLAM schemes are presented in Table I, where a global t
step ofAt (given in (4.8)) is used in solving the ELLAM scheme (4.7). The ELLAMler
solutions and the ELLAMRK solutions specify whether the Euler tracking (5.1) or th
Runge—Kutta tracking (5.2) with a micro-time stepAdtf, given in (5.3) is used to track the
characteristics. Even though the (global) time steps are very coarse, the resulting ELL
solutions are much more accurate than the solutions with all the comparative methods
much finer spatial and temporal grid sizes and significantly increased CPU time and sto
The surface and contour plots for an ELLARK solution are presented in Figs. 1c—1d.
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TABLE 11l
The Performance of the Minmod and MUSCL Schemes

Scheme h No. of cells At Max Min CPU CFL No. Fig. No.
Minmod = 4,096 %% 0.4223 0 1min5s 0.98 9a-9b

s 4,096 % 0.4049 0 1min30s 0.71 —

i 4,096 705 0.3745 0 7min3ls 0.14 —

6%‘ 4,096 5000 0.3723 0 11minl16s 0.09 —

gie 9,216 360 0.5722 0 3min37s 0.99 —

gie 9,216 1050 0.5629 0 4min12s 0.85 —

L 9,216 =,  0.5371 0 8min24s 0.43 —

gie 9,216 000 0.5257 0 16 min48s 0.21 —

= 36,864 % 0.7826 0 28min25s 1.0 10a—-10b

= 36,864 745 0.7702 0 40min7s 0.71 —

= 65,536 5 0.8393 0 1h 11 min 0.95 —

2%5 65,536 3000 0.8332 0 1h 29 min 0.76 —

3%4 147,456 3500 0.8987 0 4 h2min 0.95 —

5%2 262,144 5000 0.9250 0 11 h 58 min 0.76 —

ﬁ 1,048,576 2600 0.9681 0 3days23h 0.76 11la-11b
MUSCL x 4,096 =5 0.6604 —0.0010 1min9s 0.98 9c-9d

a 4,096 a5 0.6485 —0.0003 1min49s 0.71 —

a 4,096 - 0.6268 0 9min6s 0.14 —

s 4,096 5% 0.6252 0 13min39s 0.09 —

i 9,216 o 0.8012 —0.0003 4min22s 0.99 —

gis 9,216 1000 0.7965 —0.0002 5min5s 0.85 —

gie 9,216 3000 0.7832 0 10min10s 0.43 —

giG 9,216 7000 0.7780 0 20min21s 0.21 —

l—}% 36,864 oo 0.9326 0 34min42s 1.0 10c-10d

= 36,864 ;L.  0.9291 0 49min1ls 0.71 —

= 65,536 P 0.9571 0 1h 27 min 0.95 —

= 65,536 5 0.9556 0 1h49 min 0.76 —

3—; 147,456 3500 0.9775 0 4 h 55 min 0.95 —

= 262,144 5% 0.9851 0 14 h 39 min 0.76 —

. 1048576 I 0.9948 0 4days21h 0.76 11c-11d

Remark7.2 The results in Table | and Figs. 1c—1d show that the ELLAM schem
generate accurate numerical solutions even if very large time steps are used, leadi
significantly improved efficiency. The figures also show that the ELLAM solutions do r

have deformation or phase errors.

7.3. The Upwind Finite Difference Simulation

As we discussed in Remark 6.1, the UFDM has been a primary underlying schem
many large-scale production simulators in petroleum reservoir simulation and in subsul
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FIG.1. Theanalytical solution andthe ELLAM solutionht= 3, h = 6%‘. (a) Analytical, min= 0, max= 1.

(b) Analytical solution. () ELLAMRK, min = 0, max= 0.9987. (d)At = £, At; = 2%

20°

contaminant transport and remediation, because it is explicit and fairly easy to impler
and can generate very stable solutions with correct qualitative physical trend even for
complex multiphase and multicomponent fluid flows in porous media. Although it is w
known that the UFDM generates solutions with numerical dispersion, not many people |
actually realized how severe the numerical dispersion could be quantatively in the UFI
The experiments in this section serve to illustrate the quantative behavior of the UFDN
With the base spatial grid size bf= 6%1, the time stepAt = &5; is the largest admissible

step size that meets the CFL condition (the Courant number is 0.98). The UFDM sch
generates an extremely diffusive solution with a maximal value of only 0.1491, even tho
it is extremely efficient per time step (it took 1.7 s for 290 time steps). With a compara
CPU time which the ELLAM scheme consumed, the UFDM can generate a solution usi
spatial grid size oh = 1%92 (or equivalently, 36,864 elements) and a time stepof= 7.
However, the resulting solution has a maximal value of only 0.3475. The finest grids u
areAt = 55 andh = ﬁ (i.e., 1,048,576 elements). It took CPU tinfe3dh and 27 min
for the UFDM to generate a solution with a maximal value of 0.7255, whose surface

contour plots are presented in Figs. 2c and 2d.
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FIG. 2. The upwind finite difference solutions with different spatial and temporal gridsS at7.
(@) min= 0, max= 0.5661. (b)h = X, At = (c) min= 0, max= 0.7225. (d)h = -, At =

bid b
512° 6000" 1024’ 12000"

Remark7.3. Although the UFDM is explicit and extremely efficient per time step, |
requires an extremely large number of time steps; therefore, it takes a significant amot
overall CPU time to obtain areasonably accurate solution. Furthermore, the UFDM nee
extremely refined grid, which means a significant increase of the computer memory. Fin
Figs. 2a—2d show that the UFDM generates solutions with no undershoots or oscillat
but with a slight deformation due to the grid orientation effect [24].

Remark7.4. While the UFDM is subject to the CFL condition, the results in Table
show that it produces slightly more accurate solutions with larger time steps that satisf
CFL condition. In contrast, the backward-Euler temporal discretization tends to gene
more accurate solutions for smaller time steps. This phenomenon can be explained thi
the following one-dimensional analogue of problem (3.1)

9 9
vy, X € (—05,0.5), t € (0, T],
ot X (7.3)

c(—0.5,t) = g(t), t € [0, T],

whereV is a positive constant. Let the grid be defined by the first two equations in (4
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with x; being replaced by, andC], := C(x', t,), the one-dimensional UFDM is

Ci i 1 Ci 1 — ifii
n n=2 v = =2 =0 1<i<N,1<n<N
At + AX s = = ) = = ts (74)

Cl=g(ty), O0=<n<N.

The local truncation error for the scheme (7.4) is

c(x', tq) — c(X', th_1) c(X' tho1) —c(X' %, th_1)

At tV AX
ac ac At 3%c(X', tq_1)
- (ﬁJrVax) (X' to- Dt e

(7.5)
_ Vax (X, th-1)

2 ax2

+ O((AX)? + (AD?)

_ VAX(Cr —1) 8%c(X', t_1)
- 2 ax2

+ O(AX)? + (AD)?),

whereCr ;= Vm is the Courant number. In the scheme (7.4), the temporal spatial err

cancel each other and a second-order local truncation error can be achieved with the Cc
number equals to one. In fact, in this case the particle at the xiodet timet,_; meets
the nodex' at timet,. Hence, the scheme (7.4) becon®@s= C!~} which is exact for the
Courant numbe€r = 1. In contrast, in a backward-in-time scheme the temporal error a
the spatial error add up. This will be demonstrated in the next subsection.

7.4. The BEGAL and BEQPG Simulation

Because of their unconditional stability and robustness, fully implicit temporal d
cretizations have been widely used in many large-scale production simulators in indus
applications. Nevertheless, the accuracy issue has been traditionally overlooked. Ir
section, we conduct numerical experiments to investigate the performance of the backv
Euler temporal discretization, including the backward-Euler Galerkin finite element met|
(BE_GAL) and quadratic Petrov—Galerkin finite element method (Bl2G). The numerical
results are presented in Table Il, with the surface and contour plots for selected exa
runs being given in Figs. 3a—4d.

With the base spatial grid size of = 6—14 and a time step oAt = 5, (which gives
a Courant number of.84), the BEGAL and BEQPG methods generate solutions with
minimal values of 0 and-0.0005 and maximal values of2755 and ®143 (cf. Table II),
respectively, which are excessively over-damped. Moreover, th&BE and BEQPG
methods require more iterations in the PCGS solver than the ELLAM does, because
yield strongly non-symmetric coefficient matrices. The_.BBL and BEQPG solutions
with a much finer time step okt = g5, are presented in Figs. 3a-3b and 4a—4b, whic
show that these solutions are still very diffusive and deformed. They have minimal val
of 0 and—0.0011, and maximal values o459 and (B780, respectively. The more severe
deformation in the BEQPG solution is due to the effect of grid orientation incurred b
the upwinding in the QPG method [24]. With the same time stefitoE 2= but reduced

800
spatial grid sizén = g, it takes significantly increased CPU times for the BBL and the

96’
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FIG.3. The BEGAL solutions with different time step sizesht= 5, h = 64 (a) min= 0, max= 0.4959.

(b) At = Z5. (c) min= 0, max= 0.8412. (d)At = .

BE_QPG methods to generate solutions with essentially no improvement With acompat
overall CPU time we could use a much finer time stepbf= 555 and still use the coarse
spatial grid ofh = 64, leading to a Courant number of 0.28 and numerical solutions wi
more visible improvement.

With the same time step okt = 575, and a reduced spatial grid size lof = 96,
the BEGAL and BEQPG methods again consume significantly increased CPU time
generate solutions with essentially no improvement. Using less overall CPU time, we ¢
use the base spatial grid bf— 5 but a finer time step oAt = 7000 yieIding solutions
with more visible |mprovement Th|s shows that with= & and At = 555, that gives
a Courant number of.@8, the temporal error still dommates the BEAL and BEQPG
solutions. Finally, we use a spatial gl’ldl’sz and atime step okt = 7 and generate
the BEGAL and BEQPG solutions with mlnlmal values of 0 areD.0042 and maximal
values of 08412 and (6040, respectively. Their surface and contour plots are presen
in Figs. 3c—3d and 4c—4d. The CPU times consumed by th&SBE and the BEQPG
solutions ag 9 h and 4 min and 12 h and 5 min.
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FIG. 4. The BEQPG solutions with different time step sizesTat= 5, h = 6%‘. (a) min=—0.0011 max=
0.3780. (b)At = 7. () min= —0.0042 max= 0.6040. (d)At =

6000"

Remark7.5. Withatime step o\t = 75 (or equivalently9 h of CPU for the BEGAL

or 12 h of CPU for the BEQPG), the BEGAL and BEQPG methods still cannot generate
solutions that are comparable with the ELLAM solutions uskig= 75 (or about 0.5 min
of CPU). In fact, the BEQPG solution still has severe deformation. These results show t
even though fully implicit methods are unconditionally stable and allow large time step:
be used in a simulation while maintaining its stability, extremely small time steps have
be used in these schemes, not for the reason of stability but for the reason of a reaso
accuracy. Consequently, this significantly reduces the efficiency of the simulation.

Remark7.6. For a given spatial grid, the backward-Euler schemes produce more a
rate numerical solutions with finer time steps. This is in contrast to the explicit upkiind
scheme. For simplicity, we explain this for an implicit space-centered scheme, which
be viewed as an analogue of the B¥AL scheme

C, —C Ct—Ct :
n__“n-l g yIn n_ -0, 1<i<N-11<n<N, (7.6

At 2AX
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or a backward, one-point upwind scheme, which can be viewed as an analogue o
BE_QPG scheme

Ci _Ci Ci _Cifl )
n_Tn-lyIn _Tn o, 1<i<N,1<n<N,. (7.7)
At AX

The local truncation error of the space-centered scheme (7.6) is

c(x', tn) —c(X', th_1) Y c(xX 1 t) —c(x 1 th)
At 2AX

_ Ato%e(xty) 2 2
= -5 + O((AX)” + (A1)9), (7.8)

while the local truncation error of the upwind scheme (7.7) is

c(X', th) — (X', th_1) c(x,tn) —c(x' 71, tn)

\
At + AX
ac ac - At d%c(x',ty)  VAx (X', t,)
= [=4+V—=) (X' th) — = SLVANE ’ O(AX)? + (At)?
<8t + 8x)( ) 2 ot2 2 oxz T OUA0THADY

+ O((AX)? 4 (AD)?). (7.9)

VAX(Cr + 1) %c(X', tn)
2 NG

Unlike those in (7.5) that cancel with each other, the spatial and temporal errors in (
and (7.9) add up. Therefore, with a reduced time sk¢pthe local truncation error is
reduced. Hence, the numerical solutions are more accurate with smaller time steps.

7.5. The CNGAL, CNQPG, and CNCPG Simulation

In this subsection we investigate the performance of the Crank—Nicolson Gale
(CN_GAL), quadratic Petrov—Galerkin (CRPG), and cubic Petrov—Galerkin Galerkin
(CN_CPQG) finite element methods. The results are presented in Table Il, and the su
and contour plots for selected runs are given in Figs. 5a—7b.

With a spatial grid size ofi = 6—14 and a time step size aft = 5, the CNGAL solu-
tion has a minimal value 0£0.2092 and a maximal value of&B72. Severe undershoot,
deformation, and phase errors are observed in the plots for the solution in Figs. 5
The CN.QPG solution has a minimum value 6f0.1282, a maximum value of.6845,
and serious damping, phase error, and deformation. TheCE method generates an
unbounded solution for the given time step and spatial grid size that yields a Courant nut
of 2.84, since the CNCPG method requires the Courant number not too far from 1. Ne
we keep the time step size but reduce the spatial grid size:t%%. The CN.GAL solution
does not change much. The maximal value of the @RG solution increases from 0.6845
to 0.7626, but the undershoot also increases fredrl282 to—0.1654. Alternatively, we
keep the spatial grid df = 6—14 but reduce the time step sizeAt = ;5. Both the CNGAL
and CNQPG solutions are improved considerably. The CRG solution is now available
and has a maximal value of 0.9824 and a negligible undershce®®004.
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Remark7.7. Because of their second-order accuracy in time, the@N., CN_QPG,
and CNCPG methods often generate more accurate solutions than th@ABEand
BE_QPG methods do. However, the GBIAL and CNQPG methods yield solutions with
severe undershoot and phase errors. Tha@RG method generates more accurate solutio
if the Courant number is around one but generates unbounded solutions for larger Co
numbers or solutions that are close to @AL solutions for small Courant numbers. In any
case, these methods are not compatible with the ELLAM solutions, in terms of accur
efficiency, and being free of deformation and phase errors.

7.6. The SDM Simulation

Table Il also contains the numerical solutions of the streamline diffusion finite elem
method (SDM), whose surface and contour plots are presented in Figs. 7c—8d for a
step ofAt = 55, andh = 6i4. The undetermined parametétsn (6.8) are chosen to bef)
0.1, and 0001, respectively. AK decreases fromBto 0.1 and then to @01, the maximal
and minimal values of the corresponding SDM solutions change ft@88Q and-0.0203
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to 0.9456 and—0.0037, and then to.0502 and—0.0033. Namely, the SDM solutions
have eliminated almost all the damping and undershoot and become more accurate
numerical solutions will no longer improve as one further reduces the vakieTaie SDM
solutions have no phase error or deformation, but do require the most CPU time per
step since it has double the number of unknowns as those for the other methods. This i
requires more iterations in solving the linear system. Furthermore, on each (space-i
cell, the SDM has eight basis functions which are the tensor product of three unival
functions, while all other methods have four basis functions on each (space) cell whicl
the tensor product of two univariate functions.

Remark7.8. The SDM can capture shock discontinuities in a thin region, but the num
ical solutions may develop over- and under-shoots within this layer. A modified SDM w
improved shock-capturing properties was proposed in [41, 45], which consists of addi
shock-capturing term to the diffusion by introducing a cross-wind control that is close to
steep fronts or shocks. This modified SDM scheme performs better in terms of catching
fronts or jump discontinuities. However, it involves an additional undetermined parame
and thus is not used in our comparison.
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7.7. The MUSCL and Minmod Simulations

The numerical results of the MUSCL and Minmod schemes are presented in Table
Since these methods are explicit, the same spatial and temporal grids are used in the n
ical simulations as those used in UFDM to observe their performance. With the base sy
grid size ofh = 6i4 (i.e., 4,096 cells) and the time step size/df = g5, the Minmod and
MUSCL methods generate solutions with minimal values of 0-aB®010, and maximal
values of 0.4223 and 0.6604, respectively. Their contour and surface plots are pres
in Figs. 9a—9d. Using a CPU time of slightly more than one minute, they generate n
accurate solutions than the UFDM with = 2%% and At = 5755 and the BEGAL and
BE_QPG solutions with more timal h of CPUtime. With a spatial grid size di = %6
and a time step size okt = 17, the MUSCL and Minmod schemes already genera
fairly accurate solutions, which are presented in Figs. 10a—10d. Finally, the MUSCL
Minmod solutions with a spatial grid size bf= 1. and a time step size aft = -~

1024 12000
are presented in Figs. 11a-11d.

Remark7.9. The MUSCL and Minmod schemes generate more accurate solutions t
the UFDM, Galerkin, and Petrov—Galerkin finite element methods with backward-EL
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or Crank—Nicolson temporal discretizations, and the streamline diffusion finite elernr
methods. With the same spatial grid and temporal step sizes the MUSCL scheme gent
more accurate solution than the Minmod scheme. However, the solutions generate
these methods are still not comparable with those generated by the ELLAM scheme:
effectively discretize temporal derivatives and the advection term along characteristic:

Remark7.10  There has widely been a misunderstanding that as long as the time
is chosen small enough to satisfy the CFL condition (or even smaller), an Eulerian me
should generate a solution with the same accuracy as that produced by the ELLAM scl
with a possibly larger time step (but the same spatial grid size). This in turns imp
that the ELLAM schemes will probably not improve computational efficiency much sin
reducing the size of time steps in (especially explicit) Eulerian methods will not incre
computational cost much. However, the numerical results in this section show that
actually isnotthe case. The results in Tables | and 11l show that with the same spatial ¢
size ofh = 6i4, the solutions generated by the MUSCL and Minmod schemes with a (larg
admissible) time step akt = g5 are excessively diffusive and are not comparable with tf
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(b) The Minmod solution. (¢) mie= —0.001Q max= 0.6604. (d) The MUSCL solution.

solution generated by the ELLAM scheme with a time stepbf= 75 at all. Furthermore,

if the time step is reduced in size, the MUSCL and Minmod schemes generate slightly
accurate solutions as we demonstrated for explicit methods in Remark 7.3. Therefor
improve the accuracy of the numerical solutions generated by the MUSCL and Minr
schemes, one has to refine both the spatial grid and the time step. As a matter of fa
order to generate solutions that are comparable to the ELLAM solutionh/vift:h(ai4 and
At = 75, one has to significantly reduce the sizes of the spatial grids and temporal s
in the MUSCL and Minmod schemes from= & to h = 15, and the time step size
from At = J5 to At = 55, Consequently, this leads to a significantly increased cost
computational efficiency and memory storage.

7.8. Additional Numerical Examples

To observe the performance of the ELLAM scheme (4.7) in solving advection-react
PDEs with non-homogeneous and/or discontinuous boundary conditions, we apply
ELLAM scheme to the following two model problems.
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0.7826. (b) The Minmod solution. (c) mig 0, max= 0.9326. (d) The MUSCL solution.

(&) min= 0, max=

Model Problem Il. We consider the transport of a Gaussian pulse, which crosses ovel
boundary of the spatial domaih = (—0.5, 0.5) x (—0.5, 0.5). The initial Gaussian pulse is
stillgiven by (7.1) with the same standard deviatos- 0.0447 but different centered devia-
tionsx;c = Xoc = —0.5. Hence, the initial Gaussian pulse is located at the left-bottom cor
of the domairf2. The rest of the Pulse that is not present is furnished via the inflow bound
condition. To obtain an analytical solution, we impose a velocity fielé/@k;, xo) = 1
andV,(x1, X2) = 1 and a time interval of [OT] = [0, 0.5]. Thus, the transport is diagonal
and terminates at the center of the dom@inA uniform spatial grid ofAx; = Ax, = 6%1
and a time step oAt = % are chosen in the numerical simulation. An Euler method wi
no micro-time step tracking is used to evaluate the characteristics. The surface and cc
plots are presented in Figs. 12a—12b, which show that the ELLAM scheme still genet
accurate solutions even if a non-homogeneous boundary condition is present.

Model Problem lll. To observe the performance of the ELLAM scheme (4.7) in solvir
advection-reaction PDEs with discontinuous boundary conditions and solutions, we «
sider the transport of a square pulse. A spatial domafa ef (—0.5, 0.5) x (—0.5, 0.5), a
time interval of [Q T] = [0, 0.5], and a velocity field oW1 (X1, X2) = 1 andVa(Xz, X2) =0
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are used. A homogeneous initial condition is chosen. A discontinuous boundary cond
is prescribed at the inflow boundaxy= —0.5

1, ifye (=0.250.25),

0, elsewhere (7.10)

aly.t) = {

As in Model Problem II, a uniform spatial grid adfx; = Ax, = 6%1 and a time step of
At = % are chosen in the numerical simulation. An Euler method with no micro-time s
tracking is used to evaluate the characteristics. The surface and contour plots are pres
in Figs. 12c—12d, which show that the ELLAM scheme still generates satisfactory soluti
even if a discontinuous boundary condition is prescribed.

8. SUMMARY AND DISCUSSIONS ON POSSIBLE EXTENSIONS

We develop a family of ELLAM schemes for first-order linear advection-reaction PD
on generab-dimensional spatial domains. These schemes significantly reduce tempg
truncation errors by using a forward characteristic tracking algorithm in evaluating tr
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right-hand sides and generate accurate numerical solutions even if large time steps are
They naturally incorporate inflow boundary conditions into their formulations without a
artificial outflow boundary conditions needed and conserve mass. Moreover, they
well-conditioned, regularly structured, symmetric, and positive-definite coefficient ma
ces. Consequently, the resulting discrete algebraic systems can be solved efficiently &
conjugate gradient method in an optimal order number of operations without any precc
tioning needed. Numerical results are presented to compare the performance of the EL
schemes with many well studied and widely used methods, including the upwind finite dif
ence method, the Galerkin and the Petrov—Galerkin finite element methods with backw
Euler or Crank—Nicolson temporal discretization, the streamline diffusion finite elem
methods, the monotonic upstream-centered scheme for conservation laws (MUSCL)
the Minmod scheme. These results show that the ELLAM schemes often outperform t
methods in the context of first-order linear advection-reaction PDEs. Of course, MUSCL
Minmod schemes are well suited for nonlinear hyperbolic conservation laws. Furtherm
Eulerian methods are easier to formulate and implement to characteristic methods.
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In multiphase (e.g., immiscible) fluid flow processes in porous media, the correspon
governing equations are of the form of nonlinear hyperbolic conservation laws, which
similarto Eq. (1.2) but have a nonlinear advection term that is typical8simaped function
of the unknown variable. Consequently, these equations could develop non-unique \
solutions [10, 47, 48], and characteristic methods do not apply directly. Previously, Esp
and Ewing [23] presented an operator-splitting technique to overcome this difficulty.
fractional flow functionf (S) is split into an advective concave hrﬁ_I(S) of f(S), whichis
linear in what would be the shock region of the governing PDE, and a residual anti-diffus
part. The modified advection PDE with the advection term giverﬁ_(ﬁo yields the same
entropy solution as the original PDE, and thus defines characteristic directions uniq
The residual anti-diffusive advection termis treated numerically by a Petrov—Galerkin fi
element method. This technique has been applied in numerical simulation of the mod
method of characteristics for immiscible fluid flows [19]. Ewing [25] and Dadtlel.
[20] have also applied the operator-splitting concept in developing an ELLAM scheme
one-dimensional immiscible fluid flow problems, which has shown very promising resu
The authors are currently developing multi-dimensional ELLAM schemes for nonlin
advection-dominated PDEs.

When multiple components or species are involved in the fluid flow processes, m
PDEs of form (1.2) are coupled together through the reaction terms. Previously, some ¢
authors and their collaborators generalized the ELLAM schemes for linear transport P
to subsurface contaminant transport with biodegradation or radionuclides and rese
souring in one space dimension [32, 69, 74]. The numerical results showed their st
potential. The generalization of the ELLAM schemes developed in this paper to mt
dimensional transport systems (1.1)—(1.2) will be presented elsewhere.

Finally, we point out that in the system (1.1)—(1.2) the Darcy velocity the transport
equation (1.2) is given as the numerical solution to the pressure equation (1.1). Consequ
the velocity field is given as piecewise polynomials at discrete time levels. Moreover, pol
media could be strongly heterogeneous and deformable, the right-hand sources anc
terms are singular, and the pressure could be very high. All of these issues introduce fu
difficulties and complexities, which will be addressed in future publications.
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